Как называется прибор для измерения давления воздуха

Приборы для измерения давления. Виды и работа. Применение

Как называется прибор для измерения давления воздуха

Характеристикой давления является сила, которая равномерно воздействует на единицу площади поверхности тела. Эта сила оказывает влияние на различные технологические процессы. Давление измеряется в паскалях. Один паскаль равен давлению силы в один ньютон на площадь поверхности в 1 м2. Применяют приборы для измерения давления.

Виды давления

  • Атмосферное давление образуется атмосферой Земли.
  • Вакуумметрическое давление – это давление, не достигающее величины атмосферного давления.
  • Избыточное давление – это величина давления, превосходящая значение атмосферного давления.
  • Абсолютное давление определяется от величины абсолютного нуля (вакуума).

Виды и работа

Приборы, измеряющие давление, называются манометрами. В технике чаще всего приходится определять избыточное давление.

Значительный интервал измеряемых величин давлений, особые условия измерения их во всевозможных технологических процессах обуславливает разнообразие видов манометров, которые имеют свои различия по конструктивным особенностям и по принципу работы. Рассмотрим основные из применяемых видов.

Барометры

Барометром называют прибор, измеряющий давление воздуха в атмосфере. Существует несколько видов барометров.

Ртутный барометр действует на основе перемещения ртути в трубке по определенной шкале.

Жидкостный барометр работает по принципу уравновешивания жидкости давлением атмосферы.

Барометр-анероид работает на изменении размеров металлической герметичной коробки с вакуумом внутри, под действием давления атмосферы.

Электронный барометр является более современным прибором. Он преобразовывает параметры обычного анероида в цифровой сигнал, отображающийся на жидкокристаллическом дисплее.

Жидкостные манометры

В этих моделях приборов давление определяется высотой столба жидкости, которое выравнивает это давление. Жидкостные приборы для измерения давления чаще всего выполняют в виде 2-х стеклянных сосудов, соединенных между собой, в которые залита жидкость (вода, ртуть, спирт).

Рис-1

Один конец емкости соединен с измеряемой средой, а второй открыт. Под давлением среды жидкость перетекает из одного сосуда в другой до выравнивания давления. Разность уровней жидкости определяет избыточное давление. Такими приборами замеряют разность давлений и разрежение.

На рисунке 1а изображен 2-х трубный манометр, измеряющий вакуум, избыточное и атмосферное давление. Недостатком является значительная погрешность измерения давлений, имеющих пульсацию. Для таких случаев применяют 1-трубные манометры (рисунок 1б). В них один край сосуда большего размера. Чашка соединена с измеряемой полостью, давление которой передвигает жидкость в узкую часть сосуда.

При замере берется во внимание только высота жидкости в узком колене, так как жидкость изменяет свой уровень в чашке незначительно, и этим пренебрегают. Чтобы произвести замеры малых избыточных давлений используют 1-трубные микроманометры с трубкой, наклоненной под углом (рисунок 1в). Чем больше наклон трубки, тем точнее показания прибора, вследствие увеличения длины уровня жидкости.

Особой группой считаются приборы для измерения давления, в которых движение жидкости в емкости действует на чувствительный элемент – поплавок (1) на рисунке 2а, кольцо (3) (рисунок 2в) или колокол (2) (рисунок 2б), которые связаны со стрелкой, являющейся указателем давления.

Рис-2

Преимуществами таких приборов является дистанционная передача и их регистрация значений.

Деформационные манометры

В технической области приобрели популярность деформационные приборы для измерения давления. Их принцип работы заключается в деформации чувствительного элемента. Эта деформация появляется под действием давления. Упругий компонент связан со считывающим устройством, имеющим шкалу с градуировкой единицами давления.

Деформационные манометры делятся на:

  • Пружинные.
  • Сильфонные.
  • Мембранные.

Рис-3

Пружинные манометры

В этих приборах чувствительным элементом является пружина, соединенная со стрелкой передаточным механизмом. Давление воздействует внутри трубки, сечение старается принять круглую форму, пружина (1) пытается раскручиваться, в результате стрелка передвигается по шкале (рисунок 3а).

Мембранные манометры

В этих приборах упругим компонентом является мембрана (2). Она прогибается под давлением, и воздействует на стрелку с помощью передаточного механизма. Мембрану изготавливают по типу коробки (3). Это увеличивает точность и чувствительность прибора из-за большего прогиба при равном давлении (рисунок 3б).

Сильфонные манометры

В приборах сильфонного типа (рисунок 3в) упругим элементом является сильфон (4), который выполнен в виде гофрированной тонкостенной трубки. В эту трубку воздействует давление. При этом сильфон увеличивается в длину и с помощью механизма передачи передвигает стрелку манометра.

Сильфонные и мембранные виды манометров используют для замеров незначительных избыточных давлений и вакуума, так как упругий компонент имеет небольшую жесткость. При применении таких приборов для измерения вакуума они получили название тягомеров. Прибор, измеряющий избыточное давление, является напоромером, для измерения избыточного давления и вакуума служат тягонапоромеры.

Приборы для измерения давления деформационного типа имеют преимущество в сравнении с жидкостными моделями. Они позволяют производить передачу показаний дистанционно и записывать их в автоматическом режиме.

Это происходит вследствие преобразования деформации упругого компонента в выходной сигнал электрического тока. Сигнал фиксируется приборами измерений, которые имеют градуировку по единицам давления. Такие приборы имеют название деформационно-электрических манометров. Широкое использование нашли тензометрические, дифференциально-трансформаторные и магнитомодуляционные преобразователи.

Дифференциально-трансформаторный преобразователь

Рис-4

Принципом работы такого преобразователя является изменение силы тока индукции в зависимости от величины давления.

Приборы с наличием такого преобразователя имеют трубчатую пружину (1), которая передвигает стальной сердечник (2) трансформатора, а не стрелку. В итоге изменяется сила индукционного тока, подающегося через усилитель (4) на измерительный прибор (3).

Магнитомодуляционные приборы для измерения давления

В таких приборах усилие преобразуется в сигнал электрического тока вследствие передвижения магнита, связанного с упругим компонентом. При движении магнит воздействует на магнитомодуляционный преобразователь.

Электрический сигнал усиливается в полупроводниковом усилителе и поступает на вторичные электроизмерительные устройства.

Тензометрические манометры

Преобразователи на основе тензометрического датчика работают на основе зависимости электрического сопротивления тензорезистора от величины деформации.

Рис-5

Тензодатчики (1) (рисунок 5) фиксируются на упругом элементе прибора. Электрический сигнал на выходе возникает вследствие изменения сопротивления тензорезистора, и фиксируется вторичными устройствами измерения.

Электроконтактные манометры

В схемах сигнализации, системах авторегулирования технологических процессов, приборах тепловой защиты популярными стали электроконтактные манометры. На рисунке изображена схема и вид прибора.

Рис-6

Упругим компонентом в приборе выступает трубчатая одновитковая пружина. Контакты (1) и (2) выполняются для любых отметок шкалы прибора, вращая винт в головке (3), которая находится на внешней стороне стекла.

При уменьшении давления и достижении его нижнего предела, стрелка (4) с помощью контакта (5) включит цепь лампы соответствующего цвета. При возрастании давления до верхнего предела, который задан контактом (2), стрелка замыкает цепь красной лампы контактом (5).

Измерительные манометры разделяют на два класса:

Образцовые приборы определяют погрешность показаний рабочих приборов, которые участвуют в технологии производства продукции.

Класс точности взаимосвязан с допустимой погрешностью, которая является величиной отклонения манометра от действительных величин. Точность прибора определяется процентным соотношением от максимально допустимой погрешности к номинальному значению. Чем больше процент, тем меньше точность прибора.

Образцовые манометры имеют точность намного выше рабочих моделей, так как они служат для оценки соответствия показаний рабочих моделей приборов. Образцовые манометры применяются в основном в условиях лаборатории, поэтому они изготавливаются без дополнительной защиты от внешней среды.

Пружинные манометры имеют 3 класса точности: 0,16, 0,25 и 0,4. Рабочие модели манометров имеют такие классы точности от 0,5 до 4.

Применение манометров

Приборы для измерения давления наиболее популярные приборы в различных отраслях промышленности при работе с жидким или газообразным сырьем.

Перечислим основные места использования приборы для измерения давления в:

  • Газо- и нефтедобывающей промышленности.
  • Теплотехнике для контроля давления энергоносителя в трубопроводах.
  • Авиационной отрасли промышленности, автомобилестроении, сервисном обслуживании самолетов и автомобилей.
  • Машиностроительной отрасли при применении гидромеханических и гидродинамических узлов.
  • Медицинских устройствах и приборах.
  • Железнодорожном оборудовании и транспорте.
  • Химической отрасли промышленности для определения давления веществ в технологических процессах.
  • Местах с применением пневматических механизмов и агрегатов.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/pribory-dlia-izmereniia-davleniia/

Приборы для измерения давления воздуха. барометр-анероид. баротермогигрометр. жидкостные манометры. микроманометр цаги. пневмометрическая трубка миот. трубка хлудова

Как называется прибор для измерения давления воздуха

Приборы для измерения давления воздуха, как правило, классифицируются по виду измеряемого давления и принципу действия.

Первый признак определяет измеряемое прибором давление — атмосферное, избыточное давление или разрежение (вакуум).

По принципу действия приборы делятся на жидкостные, мембранные, пружинные, электрические и комбинированные. Все приборы характеризуются классом точности.

Барометр-анероид – Для измерения атмосферного давления применяется барометр-анероид. Принцип действия его основан на свойстве упругих тел изменять свою форму в зависимости от величины производимого на них давления. Приемником давления в анероиде служит металлическая коробка / с волнистыми поверхностями.

В коробке создано разрежение, а для того чтобы атмосферное давление не сплющило ее, плоская пружина 4 оттягивает крышку коробки вверх. При увеличении атмосферного давления коробка сжимается и конец пружины опускается, а при уменьшении давления наблюдается обратная картина.

К пружине с помощью передаточного механизма 2 прикреплена стрелка указателя 3, которая передвигается вправо или влево при изменении давления. Под стрелкой на циферблате нанесены деления, соответствующие показаниям барометра, мм рт. ст. и мб.

Так, число 750, против которого стоит стрелка анероида, показывает, что в данный момент атмосферное давление равно 750 мм рт. ст. или 1000 мб.

Для снижения влияния температуры на величину деформации коробки и пружины анероид снабжен температурным компенсатором. Положение стрелки прибора регулируют регулировочным винтом, расположенным в дне корпуса. Вращая винт, устанавливают стрелку в нужное положение.

Баротермогигрометр. Для измерения атмосферного давления можно воспользоваться баротермогигрометром (БМ-2), выпурка-емым Рижским опытным заводом Гидрометеоприборов (рис. II.2). Пределы измерения давления от 700 до 800 мм рт. ст.

Допускаемая погрешность ±5 мм рт. ст. Механизм прибора состоит из узлов барометра, гигрометра и термометра. Чувствительным элементом узла барометра является мембранная барокоробка.

При изменении атмосферного давления верхний центр мембранной барокоробки перемещается.

Это перемещение с помощью передаточного механизма преобразуется в движение стрелки давления 2 по шкале прибора. Чувствительным элементом узла гигрометра, реагирующим на изменение влажности воздуха, является капроновая нить 3. При изменении влажности капроновая нить изменяет свою длину, и рез>льтаю чего оттянутая середина нити перемещается.

Это перемещение с помощью передаточного механизма преобразуется в движение стрелки влажности 4 по шкале прибора. Погрешность при измерении относительной влажности составляет ±10%. Измерителем температуры служит жидкостный термометр 5 (толуоловый), который укреплен на шкале прибора.

Допустимая погрешность при изменении -температуры составляет ±1,5° С.

Жидкостные манометры. С помощью почти всех жидкостных манометров можно измерять разность давлений и рассматривать их как дифференциальные манометры.

Простейший жидкостный манометр Представляет собой U-образную стеклянную трубку /, закрепленную на деревянной подставке 2. Между стеклянными трубками размещена шкала 3 с миллиметровыми делениями.

В середине шкалы наносится нулевая отметка, откуда вверх и йниз ведется отсчет. Манометр заполняется подкрашенной водой до нулевой отметки. Разность давлений определится по расстоянию между менисками в обеих трубках, т. е.

сумма отсчета в мм шкале (вверх и вниз от нулевой отметки) показывает разность давлений в мм вод. ст. или кгс/м2.

Для уменьшения влияния эффекта капиллярности трубка манометра должна иметь внутренний диаметр не менее 5—б мм Как правило, точность отсчета равна ±0,5 мм, поэтому, считая допустимую ошибку в пределах 3—4%, манометр рекомендуется применять %ри измерении давления более 20 кгс/м2.

Микроманометр ЦАГИ представляет закрытый цилиндрический резервуар /, вставленный в обойму 2. Резервуар размещен на станине 3, оборудованной уровнями 4 и   регулировочными винтами 5.

Измерительная трубка 8 расположена в защитном кожухе, ее верхняя часть соединена с металлической трубкой, заканчивающейся штуцером 9, а нижняя часть — с полостью резервуара, снабженного штуцером 10 Резервуар свободно вращается вокруг оси, обеспечивая нужный угол наклона измерительной трубки Угол наклона измерительной трубки на стойке 6 фиксируется стопорным устройством 7. Стойка имеет отверстия с цифрами 0,125; 0,25 и 0,5, указывающими на значение синуса угла наклона измерительной трубки

Погрешность микроманометра ЦАГИ не превышает от ±1 до ±1,5% верхнего предела измерения Перепад давления измеряют в следующей последовательности Прибор с помощью уровней устанав ливают в горизонтальное положение Выбирают угол наклона трубки от максимального (sina=l) значения к допустимому. При отключенном микроманометре определяют так называемый начальный отсчет. Подключая к штуцерам 9 и 10 (см. рис II.5) резиновые трубки от приемников давления, записывают показания конечной величины. Микроманометром ЦАГИ измеряют давления в пределах 1—360 кгс/м2.

Микроманометры выпускаются классом 0,5 и 1. Заполняются этиловым спиртом с р = 0,8095 г/см3.

Конструкция прибора следующая. На плите / укреплен резервуар 3, герметически закрытый крышкой на резиновой прокладке.

На крышке смонтированы трехходовой кран 4, заливочная пробка 6, закрывающая отверстие для заливки, и регулятор нулевого положения мениска 5, служащий для установки мениска спирта в измерительной трубке на нулевой риске шкалы К плите крепится кронштейн 10, с измерительной стеклянной трубкой //. Трубка снабжена защитным кожухом.

Концы измерительной трубки уплотняют сальниками с резиновыми кольцами. Нижняя часть измерительной трубки через штуцер и резиновую трубку сообщается с резервуаром, а верхний ее конец сообщается с трехходовым краном.

Измерительную трубку устанавливают так, чтобы ось вращения кронштейна проходила через нуль шкалы. Шкала измерительной трубки имеет длину 300 мм, наименьшее деление шкалы 1 мм.

Для установки кронштейна с измерительной трубкой на требуемый угол наклона к плите / прикреплена дугообразная стойка 12 с пятью отверстиями, соответствующими определенным значениям постоянной прибора К (0,2; 0,3; 0,4; 0,6 и 0,8), величина которой обозначена на стойке против каждого отверстия.

Кронштейн 10 фиксируется на стойке 12 в необходимом положении с помощью фиксатора 9, который укреплен на втулке кронштейна Для установки микроманометра в горизонтальное положение на плите имеется два уровня 8 с цилиндрическими ампулами Прибор приводится в горизонтальное положение двумя регулировочными пиитами 2.

Микроманометр заполняют спиртом через отверстие в крышке с пробкой 6, а выливают через сливной кран 7, расположенный в нижней части резервуара.

Дли измерения прибор подключается резиновыми шлангами, надеваемыми на штуцера трехходового крана. Трехходовой кран имеет три штуцера, обозначенных буквами а, б и б, и отверстие для сообщения с атмосферой.

Штуцер а используется для постоянного соединения крана со стеклянной измерительной трубкой.

Каналы в трехходовом кране расположены таким образом, что при повороте его против часовой стрелки до упора резервуар и измерительная трубка сообщаются с атмосферой, а отверстия к штуцерам бив перекрыты. При этом положении крана проверяют нуль прибора.

При повороте крана по часовой стрелке до упора штуцер в сообщается с резервуаром, а штуцера а и б сообщаются между собой и с измерительной трубкой. При этом отверстие для сообщения с атмосферой перекрывается. При измерении давления резиновая трубка, идущая от места замера, надевается на штуцер в, а при измерении разрежения — на штуцер б.

При измерении динамического давления плюсовая трубка надевается на штуцер в, а минусовая — на штуцер б. Действие прибора основано на гидростатическом принципе. При равенстве давления над спиртом в резервуаре и в стеклянной трубке уровень его устанавливается на одном горизонте.

Включают прибор таким образом, чтобы давление над спиртом в резервуаре было всегда больше, чем в измерительной трубке. При этом уровень спирта в резервуаре понижается, а в измерительной трубке повышается.

Правила пользования микроманометром следующие:

установить прибор на устойчивом столе, плите и т. п.;

отрегулировать регулировочными винтами 2 положение прибора, чтобы в каждом уровне воздушный пузырек стоял в центре;

повернуть трубку трехходового крана 4 против часовой стрелки до упора;

установить «регулятор нулевого положения» в верхнее положение;

вывернуть из крышки пробку 6 и залить в резервуар этиловый спирт (с плотностью р = 0,8095+0,005 г/см3) в таком количестве, чтобы уровень его в стеклянной измерительной трубке установился приблизительно против нулевого деления шкалы, а затем поставить на место пробку 6, и завернуть ее до отказа;

надеть на штуцер б трехходового крана отрезок резиновой трубки и поставить пробку трехходового крана в рабочее положение, поворачивая ее по часовой стрелке до упора.

Поднять подсосом уровень спирта в стеклянной измерительной трубке примерно до конца шкалы н убедиться в отсутствии воздушных пробок в столбике спирта.

В случае обнаружения воздушных пробок выдуть их вместе со спиртом в резервуар;

повернуть пробку трехходового крана против часовой стрелки до упора, поставить кронштейн с измерительной трубкой на необходимый никлой и регулятором уровня окончательно скорректировать нуль;

соединит!) прибор с объектом п ;мерения и проверить положение прибора по уровням; если прибор сбился, подрегулировать его регулировочными винтами;

повернуть пробку трехходового крана по часовой стрелке до упора и приступить к отсчетам;

во время работы периодически контролировать нуль прибора, поставив трехходовой кран в положение контроля, а также следить за положением прибора по уровням.

Этиловый спирт, заливаемый в микроманометр, чтобы лучше видеть мениск, подкрашивают метиловым красным красителем «метил-рот» (50 мг красителя на 1 л спирта).

Пневмометрическая трубка МИОТ состоит из двух спаянных по длине трубок. Одна из них, снабженная полушаровой головкой с отверстием посередине, предназначена для измерений полных давлений; другая, — имеющая глухой скошенный с двух сторон конец, — для измерений статических давлений. На некотором расстоянии от конца в стенках второй трубки имеются четыре отверстия диаметром 0,5—0,8 мм.

Трубка Хлудова служит для измерения давлений во всасывающих отверстиях. Ее особенностью является загнутая на 180° головная часть.

При измерении давления пневмометрическую трубку вводят в воздуховод через специальное отверстие и устанавливают загнутым концом навстречу потоку воздуха. Ось загнутого конца трубки должна быть параллельна потоку воздуха. Полное, статическое и динамическое давления в воздуховоде измеряют, как правило, микроманометром ММН, соединенным с пневмометрической трубкой резиновыми шлангами.

Если микроманометр установлен в помещении, находящемся под избыточным давлением или разрежением, то необходимо чтобы открытый штуцер микроманометра сообщался с помощью резинового шланга с атмосферой или помещением, где давление равно атмосферному. Для обеспечения герметичности шланги должны плотно прилегать к штуцерам микроманометра и пневмометрической трубке.

Герметичность соединений проверяется следующим образом: после подсоединения пневмометрической трубки к микроманометру необходимо осторожно подуть в отверстие полного давления. Когда уровень спирта начнет подниматься в измерительной трубке, следует пальцем зажать отверстие полного давления пневмометрической трубки.

Если уровень столбика спирта после этого остается неизменным, то соединение герметично. Аналогично проверяют герметичность соединений, передающих статическое давление. После поддува (подсоса) воздуха в трубку зажимают боковые отверстия для замера статического давления.

Неизменность уровня спирта в измерительной трубке показывает герметичность соединения.

Неплотности могут быть не только в местах соединений шлангов со штуцерами, ио и в пневмометрической трубке, резиновых шлангах и арматуре микроманометра. Поэтому при обнаружении неплотности необходимо установить место утечки и устранить ее.

Во время работы с микроманометром нельзя допускать наличия в трубке микроманометра пузырьков воздуха. Последние легко удаляются легким поддувом воздуха в резервуар или наклоном микроманометра в сторону измерительной трубки. Если пузырьки воздуха отсутствуют, уровень спирта возвращается к начальному показанию.

Если при продувке спирт зальется в шланги, необходимо их снять, удалить спирт и просушить.

Приборы для измерения давления – манометры, вакуумметры или …

при измерении давления газов (включая воздух) запас принимают 20—25 % … Приборы для измерения давления. Давление измеряется манометром и … www.bibliotekar.ru/spravochnik-137-oborudovanie/100.htm

 Контрольно-измерительные приборы, приборный щиток. Приборы для

Ниже приведены основные неисправности приборов для измерения уровня топлива, … На автомобилях ЗИЛ для контроля давления масла и давления воздуха в … www.bibliotekar.ru/spravochnik-59/38.htm

 Холодное водоснабжение. Баки. Вентили

“воды поступает во всасывающую трубу за счет разрежения воздуха в центре рабочего …. Приборы длях измерения давления. Давление измеряется манометром и … www.bibliotekar.ru/spravochnik-37/21.htm

 Диафрагма. Дифманометр. МОНТАЖ ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ РАСХОДОВ …

Контрольно-измерительные приборы предназначены для измерения: давления в напорных … каждого насоса, расходов и объемов подаваемой воды или сточных вод, . … www.bibliotekar.ru/spravochnik-148-montazh-vodosnabzhenia…/169.htm

Источник: http://www.bibliotekar.ru/spravochnik-168-ventilyacia-condicionirovanie/7.htm

Атмосферное давление

Как называется прибор для измерения давления воздуха

  • Участник: Вертушкин Иван Александрович
  • Руководитель: Виноградова Елена Анатольевна  

         Тема : “Атмосферное давление”   

Сегодня за окном идёт дождь. После дождя уменьшилась температура воздуха, увеличилась влажность и уменьшилось атмосферное давление.

Атмосферное давление является одним из основных факторов, определяющих состояние погоды и климата, поэтому знания об атмосферном давлении необходимы в прогнозировании погоды. Большое практическое значение имеет умение измерять атмосферное давление. И его можно измерить специальными приборами-барометрами.

В жидкостных барометрах при изменении погоды столбик жидкости понижается или повышается.

Знания об атмосферном давлении необходимы в медицине, в технологических процессах, жизнедеятельности человека и всех живых организмов. Существует прямая связь между изменениями атмосферного давления и изменениями погоды. Рост или понижение атмосферного давления может служить признаком изменения погоды и влияет на самочувствие человека. 

Описание трёх взаимосвязанных физических явлений из повседневной жизни:

  • Связь между погодой и атмосферным давлением.
  • Явления, лежащие в основе работы приборов для измерения атмосферного давления.
  • Зависимость давления жидкости от высоты столба жидкости в жидкостных барометрах.

Актуальность работы

Актуальность выбранной темы состоит в том, что во все времена люди, благодаря своим наблюдениям за поведением животных могли предугадать изменения погоды, стихийные бедствия, избежать людских жертв.

Влияние атмосферного давления на наш организм неизбежно, резкие изменения атмосферного давления влияют на самочувствие человека, особенно страдают метеозависимые люди.

Конечно, уменьшить влияние атмосферного давления на здоровье человека мы не в силах, но помочь собственному организму можем.

Правильно организовать свой день, распределить время между трудом и отдыхом может помочь умение измерять атмосферное давление, знание народных примет, использование самодельных приборов.

Цель работы: выяснить, какую роль в повседневной жизни человека играет атмосферное давление.

Задачи:

  • Изучить историю измерения атмосферного давления.
  • Установить, есть ли связь между погодой и атмосферным давлением.
  • Изучить виды приборов, предназначенных для измерения атмосферного давления, изготовленных человеком.
  • Изучить физические явления, лежащие в основе работы приборов для измерения атмосферного давления.
  • Зависимость давления жидкости от высоты столба жидкости в жидкостных барометрах.

Методы исследования

  • Анализ литературы.
  • Обобщение полученной информации.
  • Наблюдения.

Область исследования: атмосферное давление

Гипотеза: атмосферное давления имеет важное значение для человека.

Значимость работы: материал данной работы может быть использован на уроках и во внеурочной деятельности, в жизни моих одноклассников, учеников нашей школы, всеми любителями исследований природы.

План работы

I. Теоретическая часть (сбор информации):

  1. Обзор и анализ литературы.
  2. Интернет-ресурсы.

II. Практическая часть:

  • наблюдения;
  • сбор информации о погоде.

III. Заключительная часть:

  1. Выводы.
  2. Презентация работы.

История измерения атмосферного давления

Мы живем на дне огромного воздушного океана, называемого атмосферой. Все изменения, которые происходят в атмосфере, непременно оказывают влияние на человека, на его здоровье, способы жизнедеятельности, т.к. человек является неотъемлемой частью природы.

Каждый из факторов, определяющих погоду: атмосферное давление, температура, влажность, содержание в воздухе озона и кислорода, радиоактивность, магнитные бури и др. оказывает прямое или косвенное воздействие на самочувствие и здоровье человека.

Остановимся на атмосферном давлении.

Атмосферное давление — это давление атмосферы на все находящиеся в ней предметы и Земную поверхность.

В 1640 году великий герцог Тосканский решил устроить фонтан на террасе своего дворца и приказал для этого подвести воду из ближайшего озера с использованием всасывающего насоса. Приглашенные флорентийские мастера сказали, что это невозможно, потому что воду нужно было всасывать на высоту более 32 футов (более 10 метров). А почему вода не всасывается на такую высоту, объяснить не могли.

Герцог попросил разобраться великого ученого Италии Галилео Галилея. Хотя ученый уже был стар и болен и не мог заняться экспериментами, он все-таки предположил, что решение вопроса лежит в области определения веса воздуха и его давления на водную поверхность озера. За разрешение этого вопроса взялся ученик Галилея Эванджелиста Торричелли.

Для проверки гипотезы своего учителя он провел свой знаменитый опыт. Стеклянную трубку длиной 1 м, запаянную с одного конца, заполнил полностью ртутью, и плотно закрыв открытый конец трубки, перевернул ее этим концом в чашку с ртутью. Часть ртути из трубки вылилась, часть осталась. Над ртутью образовалось безвоздушное пространство.

Атмосфера давит на ртуть в чашке, ртуть в трубке тоже давит на ртуть в чашке, так как установилось равновесие, то эти давления равны. Рассчитать давление ртути в трубке означает рассчитать давление атмосферы. Если атмосферное давление повышается или понижается, то столбик ртути в трубке соответственно повышается или понижается. Так появилась единица измерения атмосферного давления – мм. рт.

ст. – миллиметр ртутного столба. Наблюдая за уровнем ртути в трубке, Торричелли заметил, что уровень меняется, значит, он не является постоянным и зависит от изменения погоды. Если давление повышается, погода будет хорошей: холодной – зимой, жаркой – летом. Если давление резко понижается, значит, ожидается появление облачности и насыщение влагой воздуха.

Трубка Торричелли с приставленной линейкой представляет собой первый прибор для измерения атмосферного давления – ртутный барометр. (Приложение 1)

Ртутный барометр

https://www.youtube.com/watch?v=57OI6v2hhDE

Создавали барометры и другие ученые: Роберт Гук, Роберт Бойль, Эмиль Марриот. Водяные барометры сконструировал французский ученый Блез Паскаль и немецкий бургомистр города Магдебурга Отто фон Герике. Высота такого барометра составляла более 10 метров.

Для измерения давления пользуются различными единицами: мм ртутного столба, физическими атмосферами, в системе СИ – Паскалями.

Связь между погодой и атмосферным давлением

В романе Жюль Верна «Пятнадцатилетний капитан» заинтересовало описание о том, как понимать показания барометра.

«Капитан Гуль, хороший метеоролог, научил его понимать показания барометра. Мы вкратце расскажем, как надо пользоваться этим замечательным прибором.

  1. Когда после долгого периода хорошей погоды барометр начинает резко и непрерывно падать это верный признак дождя. Однако если хорошая погода стояла очень долго, то ртутный столбик может опускаться два-три дня, и лишь после этого произойдут в атмосфере сколько-нибудь заметные изменения. В таких случаях чем больше времени прошло между началом падения ртутного столба и началом дождей, тем дольше будет стоять дождливая погода.
  2. Напротив, если во время долгого периода дождей барометр начнет медленно, но непрерывно подниматься, можно с уверенностью предсказать наступление хорошей погоды. И хорошая погода удержится тем дольше, чем больше времени прошло между началом подъема ртутного столба и первым ясным днем.
  3. В обоих случаях изменение погоды, происшедшее сразу после подъема или падения ртутного столба, удерживается весьма непродолжительное время.
  4. Если барометр медленно, но беспрерывно поднимается в течение двух-трех дней и дольше, это предвещает хорошую погоду, хотя бы все эти дни и лил, не переставая, дождь, и vice versa. Но если барометр медленно поднимается в дождливые дни, а с наступлением хорошей погоды тотчас же начинает падать, хорошая погода удержится очень недолго, и vice versa
  5. Весной и осенью резкое падение барометра предвещает ветреную погоду. Летом, в сильную жару, оно предсказывает грозу. Зимой, особенно после продолжительных морозов, быстрое падение ртутного столба говорит о предстоящей перемене направления ветра, сопровождающейся оттепелью и дождем. Напротив, повышение ртутного стол ба во время продолжительных морозов предвещает снегопад.
  6. Частые колебания уровня ртутного столба, то поднимающегося, то падающего, ни в коем случае не следует рассматривать как признак приближения длительного; периода сухой либо дождливой погоды. Только постепенное и медленное падение или повышение ртутного столба предвещает наступление долгого периода устойчивой погоды.
  7. Когда в конце осени, после долгого периода ветров и дождей, барометр начинает подниматься, это предвещает северный ветер в наступление морозов.

Вот общие выводы, которые можно сделать из показаний этого ценного прибора. Дик Сэнд отлично умел разбираться в предсказаниях барометра и много раз убеждался, насколько они правильны. Каждый день он советовался со своим барометром, чтобы не быть застигнутым врасплох переменой погоды.»

Я провел наблюдения за изменением погоды и атмосферным давлением. И убедился, что существует эта зависимость.

ДатаТемпература, °СОсадки,Атмосферное давление, мм рт.ст.Облачность
28.01.2017-3765ясно

Источник: https://rosuchebnik.ru/material/atmosfernoe-davlenie-7554/

Приборы для измерения атмосферного давления

Как называется прибор для измерения давления воздуха

В гигиенических исследованиях применяются два типа барометров:

– жидкостные барометры;

– металлические барометры – анероидные.

Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

Наибольшее распространение получили ртутные барометры, так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

Используются три системы ртутных барометров:

– чашечные;

– сифонные;

– сифонно-чашечные.

Указанные системы ртутных барометров схематически представлены на рисунке 35.

Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление. Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб.Рис. 35. Чашечный барометр (слева) А – шкала барометра; Б – винт; В – термометр; Г – чашечка со ртутью Ртутный сифонный барометр (справа) А – верхнее колено; В – нижнее колено; Д – нижняя шкала; Е – верхняя шкала; Н – термометр; а – отверстие в трубке

В отдельных модификациях имеются две шкалы – в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале – нониусу.

Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса, совпадающей с делением основной шкалы.

Пример. Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст.

К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса.

Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.

Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0°С) и барометрического давления (760 мм рт. ст.).

В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки.

Данный барометр позволяет производить измерение давления с точностью до 0,05 мм рт. ст.

При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0°С.

На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

Рис. 36.Барометр-анероид Рис. 37. Барограф

Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется.

Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0°С. Градуировка циферблата может быть в мб или в мм рт. ст.

В некоторых модификациях барометра-анероида имеются две шкалы – как в мб, так и в мм рт. ст.

Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой – высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37).

Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами.

При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху.

При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст.

или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований.

Выпускаются барографы с электрическим приводом, вращающим барабан.

Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях.

Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха.

Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

Чернила для записи барограмм можно приготовить по следующей прописи:

· глицерин– 200 мл
· анилиновая краска в порошке– 2,4 г
· гуммиарабик, предварительно разведенный в 10 мл воды– 3 г
· спирт этиловый– 10 мл

Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0°С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

Приведение объема воздуха к нормальным условиям производится по формуле:

(39)

V0– искомый объем воздуха при 0°С и давлении 760 мм рт. ст.;
V1– объем воздуха, взятый для анализа при данных температуре и давлении;
– коэффициент расширения газов;
В– данное барометрическое давление;
– нормальное барометрическое давление;
t– данная температура воздуха.

Пример. Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26°С, барометрическое давление – 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0°С и 760 мм рт. ст.

Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

л.

Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л, а не 200 л.

Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и (таблица 26).

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/1_63794_pribori-dlya-izmereniya-atmosfernogo-davleniya.html

ЛечениеСосудов
Добавить комментарий