Рассчитайте концентрацию ионов водорода в крови

Водородный показатель кислотности (рН)

Рассчитайте концентрацию ионов водорода в крови

Водородный показатель, pH (лат.

pondus Hydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

.

История водородного показателя pH

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году.

Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода).

В химии сочетанием pX обычно обозначают величину, которая равна lg X, а буквой H в этом случае обозначают концентрацию ионов водорода (H+), либо, вернее, термодинамическую активность гидроксоний-ионов.

Вывод значения pH

В чистой воде при 25 °C концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH−]) оказываются одинаковыми и равняются 10−7 моль/л, это четко следует из определения ионного произведения воды, равное [H+] · [OH−] и равно 10−14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция.

При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H+] > [OH−] говорится, что раствор оказывается кислым, а при [OH−] > [H+] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH.

.

Показатель основности раствора  pOH

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора, pOH, которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH−:

как во всяком водном растворе при 25 °C , значит, при этой температуре:

.

Значения pH в растворах различной кислотности

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 – 14, также  может и выходить за эти пределы. Например, при концентрации ионов водорода [H+] = 10−15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1.

Т.к. при 25 °C (стандартных условиях) [H+] [OH−] = 10−14, то ясно, что при такой температуре pH + pOH = 14.

Т.к. в кислых растворах [H+] > 10−7, значит, у кислых растворов pH < 7, соответственно, у щелочных растворов pH > 7, pH нейтральных растворов равняется 7.

При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H+, так и OH−); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH-метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1–2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор, который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH-метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H+ в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН, что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный методкислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. Влияние температуры на значения pH:

0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H+) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды.

Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах.

Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.
ВеществоpH
Электролит в свинцовых аккумуляторах13

Источник: https://www.calc.ru/214.html

Обучающие задачи. Задача 1.Биологические жидкости имеют следующие значения рН: слюна 6,8; желудочный сок 1,5; кровь 7,4

Рассчитайте концентрацию ионов водорода в крови

Задача 1.Биологические жидкости имеют следующие значения рН: слюна 6,8; желудочный сок 1,5; кровь 7,4. Рассчитайте концентрацию ионов водорода в каждой из указанных жидкостей.

Решение: рН= – lg [H+] , lg [H+] = – pH

а) слюна рН = 6,8 , отсюда lg [H+] = -6,8

[H+]=10-6,8=1,59∙´10 -7 моль/л

б) желудочный сок рН = 1,5

рН= – lg [H+] , lg [H+] = – pH, отсюда lg [H+] = – 1,5

[H+]=10-1,5=3,16∙´10 -2 моль/л

в) кровь рН = 7,4

рН= – lg [H+] , lg [H+] = – pH

отсюда lg [H+] = -7,4

[H+]=10-7,4 = 4,0´10 -8 моль/л

Ответ: слюна [H+] = 1,59∙´10-7моль/л, желудочный сок [H+] = 3,16´10-2 моль/л, кровь [H+] = 4´10 -8 моль/л.

Задача 2. Вычислите степень диссоциации уксусной кислоты в растворе с молярной концентрацией эквивалента 0,001 моль/л. Ка (СН3СООН) = 1,8´10-5. Найти концентрацию ионов водорода и рН данного раствора.

Решение:

рН = 1/2 [pKa – lgC(CH3COOH)]; pH = 1/2 [4,75 – lg 0,001] = 1/2∙´ 7,75 = 3,875

[H+] = 10-pH = 10-3,875 = 1,35 ×10 -4; [H+] = 1,35´10-4 моль/л.

или или 13,5%

Ответ: [H+] = 1,35 ´10-4 моль/л, рН = 3,875, α = 13,5%.

Задача 3. В клинических и биохимических лабораториях применяется ацетатный буфер, который содержит уксусную кислоту 12 г/л и ацетат натрия 16,4 г/л. Определите концентрацию в моль/л уксусной кислоты и ацетата натрия, рН буферного раствора, зону буферного действия. (Ка (СН3СООН) = 1,8 ´10-5).

Решение:

M (CH3COOH) = 12+3+12+32+1 = 60 г/моль

M (CH3COONa) = 12+3+12+32+23 = 82 г/моль.

Ответ: С(CH3COOH)=0,2 моль/л, С(CH3COONa) =0,2 моль/л, pH = 4,75, зона буферного действия 4,75 ±1

Задача 4.Напишите уравнения гидролиза: CuCl2, Na2SO3, Cr2S3, NaCl, тристеарид, глицил-глицин, этилэтаноат, АТФ.

Решение:

CuCl2 – растворимая в воде соль, образована катионом слабого основания и анионом сильной кислоты, подвергается гидролизу. Гидролиз протекает по катиону слабого основания, рН7.

Na2SO3 = 2Na+ + SO32-

SO32- + HOH ↔ HSO3- + OH-

Na2SO3 + HOH ↔ NaHSO3 + NaOH

Cr2S3– соль, образованная слабым нерастворимым в воде основанием и слабой летучей кислотой. В водном растворе соль не существует, так как подвергается полному гидролизу:

Cr2S3 + 6HOH = 2Cr(OH)3↓ + 3H2S↑

NaCl– растворимая в воде соль, образована катионом сильного основания и анионом сильной кислоты. Гидролизу не подвергается.

Тристеарид – это жир, образованный многоатомным спиртом глицерином и стеариновой кислотой, эти вещества и получаются при гидролизе:

CH2-O-CO-C17H35 CH2-OH

| |

CH-O-CO-C17H35 + 3H2O ↔ CH-OH + 3C17H35COOH

| |

CH2-O-CO-C17H35 CH2-OH

Глицилглицин– дипептид, при его гидролизе происходит разрыв пептидной связи

NH2-CH2-CO-NH-CH2-COOH + H2O ↔ NH2-CH2-COOH + NH2-CH2-COOH

Этилэтаноат – сложный эфир, при гидролизе которого образуются спирт и карбоновая кислота.

СH3COOC2H5 + HOH ↔ CH3COOH + C2H5OH

Аденозинтрифосфат (АТФ) – главный источник энергии для многих биологических процессов – биосинтеза белка, ионного транспорта, сокращения мышц, электрической активности нервных клеток. Гидролиз АТФ записывают в виде кислотно-основного равновесия:

АТФ4- + HOH ↔ АДФ3- + HPO42- + H+, ∆G0=-30,5кДж/моль

Задача 5.Определить рН раствора, константу и степень гидролиза ацетата калия, если молярная концентрация соли равна 0,1 моль/л, а Kа(СН3СООН)=1,8×10-5.

Решение:Уравнение гидролиза

СН3СООК + НОН ↔ СН3СООН + КОН

СН3СОО- + НОН ↔ СН3СООН + ОН-

Вычислим константу гидролиза

Рассчитаем степень гидролиза

Определяем концентрацию гидроксид-ионов в растворе и рОН

С(ОН-)= h×Cсоли = 7,5×10-5×0,1 = 7,5×10-6 (моль/л)

рOН = -lg[OH-] = -lg7,5×10-6 = 5,12

pH = 14 – pOH = 14 – 5,12 = 8,88

Ответ:рН = 8,88, Кг = 5,6×10-10, h = 7,5×10-5

Предыдущая891011121314151617181920212223Следующая

Дата добавления: 2015-10-19; просмотров: 2895; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/5-84097.html

ЛечениеСосудов
Добавить комментарий