Скорость течения крови максимальна у оси сосуда

Скорость течения крови максимальна у оси сосуда

Скорость течения крови максимальна у оси сосуда

Гемодинамика — раздел науки, изучающий механизмы дви­жения крови в сердечно-сосудистой системе. Он является частью гидродинамики раздела физики, изучающего движение жидкостей.

Согласно законам гидродинамики, количество жидкости (Q), про­текающее через любую трубу, прямо пропорционально разности давлений в начале (Р1) и в конце (P2) трубы и обратно пропорци­онально сопротивлению (P2) току жидкости:

Если применить это уравнение к сосудистой системе, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:

где Q — количество крови, изгнанное сердцем в минуту; Р — величина среднего давления в аорте, R — величина сосудистого сопротивления.

Из этого уравнения следует, что Р = Q*R, т. е.

давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического со­противления (R).

Давление в аорте (P) и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычис­ляют периферическое сопротивление — важнейший показатель со­стояния сосудистой системы.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (R) определяется по формуле Пуазейля:

где l — длина трубки; η— вязкость протекающей в ней жидкости; π— отношение окружности к диаметру; r— радиус трубки.

Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме сопротивлений каждой трубки:

При параллельном соединении трубок их суммарное сопротив­ление вычисляют по формуле:

Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие со­кращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается.

Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы, которые располагаются в центре потока. При­стеночный слой представляет собой плазму, вязкость которой на­много меньше вязкости цельной крови.

Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови.

Теоретический расчет сопротивления капилляров невозмо­жен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.

Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5— 7 мкм. Однако вследствие того что огромное количество капилляров включено в сосудистую сеть, по которой осуществляется ток крови, параллельно, их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления, или резистивными сосудами.

Артериолы представляют собой тонкие сосуды (диаметром 15— 70 мкм). Стенка этих сосудов содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении кото­рого просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол.

Изменение сопротивле­ния артериол меняет уровень давления крови в артериях. В случае увеличения сопротивления артериол отток крови из артерий умень­шается и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления.

Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы, поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы — «краны сердечно-сосудистой системы» (И. М. Сеченов).

Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны.

Итак, артериолы играют двоякую роль: участвуют в поддержании необходимого организму уровня общего артериального давления и в регуляции величины местного кровотока через тот или иной орган или ткань. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.

В работающем органе тонус артериол уменьшается, что обеспечи­вает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается.

Суммарная величина общего периферического со­противления и общий уровень артериального давления остаются при­мерно постоянными, несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

О сопротивлении в различных сосудах можно судить по разности давления крови в начале и в конце сосуда: чем выше сопротивление току крови, тем большая сила затрачивается на ее продвижение по сосуду и, следовательно, тем значительнее падение давления на протяжении данного сосуда.

Как показывают прямые измерения давления крови в разных сосудах, давление на протяжении крупных и средних артерий падает всего на 10%, а в артериолах и капил­лярах — на 85%.

Это означает, что 10% энергии, затрачиваемой желудочками на изгнание крови, расходуется на продвижение крови в крупных и средних артериях, а 85% — на продвижение крови в артериолах и капиллярах.

Зная объемную скорость кровотока (количество крови, протека­ющее через поперечное сечение сосуда), измеряемую в миллилитрах в секунду, можно рассчитать линейную скорость кровотока, которая выражается в сантиметрах в секунду. Линейная скорость (V) отра­жает скорость продвижения частиц крови вдоль сосуда и равна объемной (Q), деленной на площадь сечения кровеносного сосуда:

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальна, около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Источник: https://lechimsosudy.com/skorost-techenija-krovi-maksimalna-u-osi-sosuda/

Движение крови по кровеносным сосудам

Скорость течения крови максимальна у оси сосуда

Движение крови по кровеносным сосудам подчиняется общим законам гидродинамики.

Кровь движется из области более высокого давления в область более низкого. Единственным источником энергии для движения крови является сердце.

Во время систолы желудочков оно передает запас потенциальной энергии крови, которая затрачивается на преодоление ее сопротивления о стенки сосудов и внутреннее трение (вязкость).

Часть энергии расходуется на растяжение стенок аорты и крупных артерий, но затраченная энергия при последующем сокращении этих сосудов способствует дальнейшему продвижению крови. По мере движения крови от сердца запас ее энергии уменьшается, а дополнительного источника для своего перемещения кровь не имеет.

Исходя из того, что приток крови к сердцу по венам равен оттоку крови в артериальное русло, следует очень важная закономерность: через все артерии, через все капилляры, как и через все вены, в одно и то же время протекает одно и то же количество крови.

Объем крови, протекающей через поперечное сечение сосудов за единицу времени, называется объемной скоростью кровотока и измеряется в мл/с. Объем крови, протекающий через поперечное сечение сосудов одного калибра за 1 мин, равен минутному объему крови.

В отдельных органах объемная скорость кровотока различна в зависимости от функционального состояния организма, нагрузки, положения тела и других факторов.

Увеличение объемного кровотока в одном регионе ведет к уменьшению его в другом, поскольку общий объем крови в организме довольно постоянен.

Так, например, во время пищеварения увеличивается приток крови к органам желудочно-кишечного тракта, но уменьшается в скелетных мышцах.

При разветвлении артерий на артериолы и затем на капилляры сумма поперечного сечения новообразованных сосудов все больше возрастает. Поэтому один и тот же объем крови, проходя за 1 мин через аорту и более мелкие сосуды, движется с разной линейной скоростью (рис. 6.9).

Под линейной скоростью кровотока понимают расстояние, которое проходит частица крови за секунду; измеряется в м/с

Рис. 6.9. Зависимость скорости кровотока от сечения сосудов. Линейная скорость кровотока в сосудах каждого отдела кровяного русла обратно пропорциональна плошали поверхности поперечного сечения этого отдела.

Наибольшая скорость в магистральных артериях и венах и наиниз- шая — в капиллярах; напротив, суммарная плошадь поверхности поперечного сечения наибольшая для капилляров и наименьшая — для крупных артерий и вен

или см/с. Самая большая линейная скорость кровотока — в аорте, примерно 0,5 м/с. По мере разветвлений сосудов она падает и самая низкая становится в капиллярах. Суммарная плошадь поперечного сечения всех капилляров в 800…900 раз больше площади поперечного сечения аорты, поэтому линейная скорость кровотока в капиллярах во столько же раз меньше, чем в аорте, и доходит до 0,5 мм/с.

Когда капилляры соединяются и образуют более крупные сосуды — венулы и вены, общая площадь их поперечного сечения все время уменьшается, а линейная скорость течения крови возрастает. В полых венах она примерно в два раза меньше, чем в аорте, поскольку аорта одна, а полых вен — две.

Таким образом, линейная скорость кровотока не зависит от удаленности сосудов от сердца, а обусловлена площадью поперечного сечения сосудов и объемом крови, проходящего по ним. При постоянном объеме крови, выбрасываемом сердцем за 1 мин, линейная скорость кровотока больше в крупных сосудах и меньше — в мелких.

Кровяное давление. Гидростатическое давление крови на стенки кровеносных сосудов называется кровяным давлением. В разных сосудах оно различно, поэтому обычно вместо общего физического понятия «кровяное давление» употребляют более конкретное — артериальное, капиллярное или венозное давление.

Величина кровяного давления зависит от следующих факторов.

  • 1. Работа сердца. Все, что приводит к увеличению минутного объема кровотока — положительные инотропные или хронотроп- ные эффекты — вызывает увеличение кровяного давления в артериальном русле. Напротив, угнетение сердечной деятельности сопровождается снижением кровяного давления, и прежде всего в артериях, но при этом в венах оно может возрастать.
  • 2. Объем и вязкость крови. Чем больше объем и вязкость крови в организме, тем выше и кровяное давление.

Рис. 6.10. Профили скоростей при ламинарном и турбулентном потоках (при турбулентном течении скорость осевого потока и средняя скорость ниже, чем при ламинарном)

В движущейся по сосудам крови вязкость зависит не только от наличия в ней форменных элементов и белков, но и от скорости кровотока и диаметра сосудов. В аорте и крупных артериях кровь течет послойно, т. е. ламинарно.

Вдоль стенки сосуда в тонком слое плазмы скорость кровотока минимальна, причем тончайший пристеночный слой плазмы вообще не движется, а следующий слой как бы скользит по нему. Форменные элементы перемещаются по центру сосуда, и наибольшая линейная скорость наблюдается по оси сосуда.

Поэтому в крупных сосудах вязкость крови максимальна в центральной части сосуда и минимальна — у стенок (рис. 6.10).

В некоторых крупных сосудах ламинарный кровоток может заменяться турбулентным (вихревым): вблизи сердечных клапанов, при сильном пережатии артерии, при очень большой скорости кровотока. При турбулентном движении вязкость крови увеличивается, так как ее слои перемешиваются (см. рис. 6.10).

В мелких кровеносных сосудах плазматический слои крови у стенок увеличивается, поэтому в них вязкость крови приближается к вязкости плазмы.

Однако в очень мелких капиллярах, диаметр которых равен или даже меньше диаметра эритроцита, вязкость крови увеличивается за счет того, что эритроциты «протискиваются» через капилляры.

Рис. 6.11. Колебания давления в разных участках сосудистой системы:

У —аорта; 2—крупные артерии; 3— мелкие артерии; 4— артериолы; 5—капилляры; 6— венулы; 7— вены; 8— полая вена; штриховкой обозначено давление в систолу (А) и диастолу (5), пунктиром — среднее давление (В)

3. Тонус кровеносных сосудов, прежде всего артериальных. Объем крови в сосудах всегда немного превышает емкость сосудистого русла. Кровь давит на сосуды, слегка их растягивает, а сосуды, суживаясь, давят на кровь.

Кроме такого пассивного давления в силу своей эластичности сосуды могут активно изменять тонус гладкомышечных волокон и тем самым влиять на кровяное давление.

Чем выше тонус (напряжение) сосудов, тем выше кровяное давление.

Самое высокое кровяное давление — в аорте, у животных оно достигает 150… 180 мм рт. ст. По мере удаления от сердца давление падает и в устьях вен, вблизи сердца доходит до 0 (рис. 6.11). Под нулевым уровнем давления крови понимают величину атмосферного давления в данное время, т. е.

кровяное давление — это давление сверх атмосферного, и поэтому из перерезанного сосуда кровь вытекает. Иногда, например, при глубоком вдохе давление в полых венах становится ниже атмосферного, или отрицательным.

Это обусловливает при пункции яремной вены засасывание воздуха в вену через инъекционную иглу.

Важно отметить, что наибольшее снижение давления происходит в артериолах. Это связано с большим сопротивлением арте- риол из-за их маленького диаметра и большой длины, что значительно увеличивает трение крови о стенки сосудов. Капилляры, хотя и имеют еще более маленький диаметр, но относительно короткие, поэтому градиент давления крови в них меньше, чем в артериолах.

Рассмотрим особенности движения крови в сосудах разного типа — в артериях, капиллярах и венах.

Артерии.

Выходящие из сердца аорта и легочная артерия называются сосудами эластического типа, так как в их стенке отсутствуют гладкомышечные волокна, а средняя оболочка состоит из плотной соединительной ткани, обладающей высокой эластичностью.

К артериям эластического типа относятся также такие крупные артерии, как общая сонная, плечевая и некоторые другие. В их стенке имеется очень небольшое количество гладких мышц, которые участвуют в натяжении эластических волокон.

По мере разветвления аорты и легочной артерии на крупные, а потом на средние, мелкие артерии и артериолы соединительнотканные волокна постепенно замешаются гладкомышечными. Поэтому средние и мелкие артерии и артериолы называются артериями мышечного типа.

Роль артерий эластического и мышечного типа в движении крови различна.

Артерии эластического типа обеспечивают непрерывный ток крови в сосудах при периодическом (систолическом) выбросе ее из желудочков, т. е. кровь движется в сосудах не только во время систолы желудочков, но и в диастолу, когда следующая порция в сосуды из сердца еше не поступает.

Во время систолы желудочков кровь выбрасывается в сосуды, которые не пустые, а содержат кровь от предыдущей систолы. Дополнительный объем крови растягивает эластические волокна, и сосуды расширяются.

Когда начинается диастола желудочков, растянутые сосудистые стенки сжимаются, перемещая кровь дальше по сосудам.

Артерии мышечного типа называются сосудами сопротивления, или резистивными сосудами. Гладкие мышцы этих сосудов постоянно находятся в определенном тонусе.

Под влиянием нервной системы или вазоактивных веществ их тонус может изменяться, влияя тем самым на величину артериального давления.

При сокращении гладких мышц артериол давление в них возрастает, но при этом уменьшается отток крови в капилляры.

При расширении артериол давление крови в артериях снижается, но увеличивается приток крови в капилляры. Артериолы называют «кранами сердечно-сосудистой системы», так как от их тонуса зависит как артериальное давление в крупных артериальных сосудах, так и местный, или органный, кровоток.

Большое клиническое значение имеет величина артериального давления. У крупных сельскохозяйственных животных артериальное давление измеряют на хвостовой или запястной артериях, у собак и кошек — на запястной или бедренной.

В экспериментальной работе применяют прямой, или кровавый, способ измерения давления, когда в артерию вводят иглу или канюлю и соединяют ее с манометром.

В клинической практике используют непрямой, или косвенный, метод.

Он заключается в том, что на конечность или на корень хвоста накладывают резиновую манжету, соединенную с резиновой грушей для накачивания воздуха, и манометром — ртутным, пружинным или электронным.

При нагнетании воздуха в манжету артерия сдавливается и кровоток в ней прекращается. Манометр при этом показывает верхнее (максимальное), или систолическое, давление, которое соответствует систоле желудочков.

Когда воздух из манжеты выпускают, кровоток начинает восстанавливаться и в сосуде ниже манжеты прослушиваются звуки, которые называются тонами Короткова (по фамилии русского врача Короткова, который впервые применил этот метод измерения артериального давления).

Звуки возникают из-за вихревых движений крови, проходящей через суженный участок сосуда, когда кровь через него проходит только во время систолы желудочков. Прекращение звуков в артерии соответствует нижнему (минимальному), или диастолическому, давлению.

Итак, в артериях давление колеблется в зависимости от фазы сердечного цикла. Во время систолы желудочков оно поднимается, во время диастолы — понижается. Разность между систолическим и диастолическим давлением называется пульсовым давлением.

При длительной регистрации артериального давления прямым, или кровавым, методом, когда внутрь сосуда вводят канюлю и соединяют ее с манометром, а колебания ртути в манометре записывают на движущейся ленте кимографа, установлено, что артериальное давление непостоянно и на записи обычно отражаются волны двух, а иногда трех порядков (рис. 6.12.).

Волны первого порядка — это пульсовое давление, т. е. колебания давления в соответствии с систолой или диастолой желудочков сердца.

Волны второго порядка — дыхательные, они совпадают с дыхательными движениями животного: к концу вдоха давление в артериях повышается, к концу выдоха — снижается.

Волны третьего порядка — еще более редкие, они объединяют несколько дыхательных волн. Происхождение волн третьего порядка не вполне ясно. Очевидно, они возникают при снижении

содержания кислорода в крови, при отравлении сосудодвигательного центра продуктами обмена. Предполагают, что волны третьего порядка обусловлены деятельностью печени как органа, депонирующего кровь.

Рис. 6.12. Кривая записи кровяного давления (ртутный манометр):

А — отчетливо видны пульсовые волны (мелкие и частые зубчики), дыхательные волны, охватывающие каждая 10. .

12 пульсовых волн, и медленные волны (3 волны) третьего порядка, не связанные с дыхательными движениями (по Рожанскому); Б— после отделения больших полушарий от продолговатого и среднего мозга. Блуждающие нервы перерезаны.

На фоне ненормально редких дыхательных движений (нижняя кривая) видны предшествующие им волны повышения кровяного давления

Большое клиническое значение имеет величина артериального давления, измеренная в определенных сосудах (табл. 6.З.).

6.3. Величина артериального давления у животных, мм рт. ст.

Вид животногоАртерияСистолическоедавлениеДиастолическоедавление
ЛошадьХвостовая110…12035…50
Крупный рогатый скот*ПО…14030…50
Мелкий рогатый скотПлечеваяПО…12050…65
Свинья»135..15545…55
Собака*120… 140

Источник: https://studme.org/291295/meditsina/dvizhenie_krovi_krovenosnym_sosudam

Некоторые особенности движения крови по сосудам

Скорость течения крови максимальна у оси сосуда

Движение крови в организме в основном ламинарное. Однако при определенных условиях кровоток может приобретать и турбулентный характер. Анализ формулы (9.22) позволяет предсказать эти условия. Действительно, турбулентности могут проявляться в полостях сердца (велико значение d).

По- видимому, их наличие здесь физиологически целесообразно, поскольку возникающие завихрения приводят к перемешиванию порций крови, поступавших из малого круга кровообращения в левый желудочек сердца, и, следовательно, способствуют более равномерному обогащению кислородом крови, выталкиваемой затем в большой круг кровообращения.

Сравнительно небольшие завихрения могут возникать в аорте и вблизи клапанов сердца (здесь велико и значение скорости движения крови).

При интенсивной физической нагрузке скорость движения крови увеличивается и это может вызвать турбулентности в кровотоке.

Из формулы (9.22) следует также, что с уменьшением вязкости турбулентный характер течения жидкости может проявляться и при меньших скоростях ее движения. Поэтому при некоторых патологических процессах, приводящих к аномальному снижению вязкости крови, кровоток в крупных кровеносных сосудах может стать турбулентным.

Следует иметь в виду, что значение критического числа Рейнольдса 2300 получено для гладких труб и ньютоновской жидкости. Для крови ReKp имеет меньшее значение и по различным литературным данным составляет около 900-1600.

Кроме того, кровеносный сосуд в ряде случаев нельзя моделировать гладкой трубой. Например, при наличии атеросклеротических бляшек в просвете сосудов имеются локальные сужения, приводящие к возникновению турбулентности в течении крови. Наличие турбулентности в кровотоке может быть обнаружено по шумам, прослушиваемым с помощью фонендоскопа.

Турбулентное течение крови по сосудам создает повышенную нагрузку на сердце, что способствует развитию патологических процессов в сердечно-сосудистой системе.

Средняя вязкость крови, измеренная капиллярным вискозиметром, в норме составляет 4-5 мПа-с. При различных патологиях значения вязкости крови могут изменяться от 1,7 до 22,9 мПа-с. Отношение вязкости крови к вязкости воды называют относительной вязкостью крови.

Следует подчеркнуть, что приведенные численные значения характеризуют среднюю вязкость крови в крупных кровеносных сосудах, точнее, вязкость проб крови вне организма, измеренную капиллярными методами (см. 9.4.2).

Неоднородность состава крови, специфика строения и разветвления кровеносных сосудов приводят к довольно сложным изменениям вязкости крови, движущейся по сосудистой системе.

Проанализируем основные факторы, влияющие на вязкость крови в живом организме.

Температура. В нормальных условиях температура тела поддерживается постоянной благодаря системе терморегуляции организма, в которой кровь сама играет роль теплоносителя. При повышении температуры должна уменьшаться и вязкость крови.

По-видимому, это могло бы несколько уменьшить нагрузку на сердце при развитии в организме патологических процессов, сопровождающихся повышением температуры тела как защитной реакции организма. В переохлажденных участках организма вязкость крови повышается, кровоток затрудняется, ухудшается питание тканей, что ведет к развитию в них патологических процессов.

Следует учесть, что изменение температуры может приводить к изменению степени агрегации эритроцитов и вызывать другие изменения в структуре крови. Поэтому температурные изменения вязкости при патологических процессах достаточно сложны.

Температурный фактор необходимо учитывать и при лечебных воздействиях, в частности при использовании гипертермии для лечения ряда заболеваний, т.е. повышения температуры всего тела или отдельных его частей за счет нагревания различными методами.

Гематокрит. Этот показатель представляет собой отношение объема эритроцитов (Иэр) к объему крови (FKp), в котором они содержатся. В норме Уэр/Укр «0,4. Оказалось, что с повышением гематокрита вязкость крови возрастает. Увеличение гематокрита может происходить как из-за увеличения концентрации эритроцитов, их агрегации, так и за счет увеличения их размеров.

Известно, что вязкость венозной крови выше, чем артериальной. Это обусловлено тем, что эритроциты венозной крови содержат углекислый газ и имеют форму, близкую к сферической, тогда как в артериальной крови эритроциты имеют форму тора и соответственно меньший объем. Благодаря этому гематокрит и соответственно вязкость венозной крови выше, чем артериальной.

Скорость сдвига (градиент скорости). Линейная скорость крови и диаметры кровеносных сосудов в различных участках сосудистой системы изменяются очень сильно. Следовательно, существенно отличаются и скорости сдвига в

Рис. 9.15. Зависимость вязкости крови от скорости сдвига

потоке движущейся крови. Поскольку кровь является неньютоновской жидкостью, то и ее вязкость, зависящая от скорости сдвига, будет различной в разных отделах системы кровообращения.

Из графика зависимости вязкости крови от скорости сдвига (рис. 9.15) [19], видно, что при скоростях сдвига выше 100 с' проявление неньютоновского характера движения крови незначительно и ее вязкость соответствует приведенным выше значениям 4-5 мПас. Однако при малых скоростях сдвига, меньших 1 с-1, эффективная вязкость весьма резко возрастает.

Рис. 9.16. Реальный профиль скорости неньютоновской жидкости [12]

Организация эритроцитов в потоке крови. Существуют довольно сложные и не до конца выясненные механизмы, приводящие к снижению вязкости движущейся крови. Они связаны с перераспределением концентрации эритроцитов в потоке движущейся крови.

Если бы по сосуду двигалась однородная ньютоновская жидкость, то скорость ее частиц по оси сосуда была бы максимальной, а у стенок — минимальной. Соединяя концы векторов скорости различных частиц жидкости, получим линию — профиль скорости.

Для ньютоновской жидкости он имеет вид параболы, а для крови, движущейся по сосудам, профиль скоростей существенно «уплощается» (рис. 9.16). Это происходит по нескольким причинам.

У стенки сосуда возникают большие градиенты скорости и, следовательно, большие деформации сдвига, которые «выталкивают» эритроциты в область меньших сдвиговых деформаций, т.е. к центру сосуда, где градиент скорости значительно меньше.

Концентрация эритроцитов и соответственно вязкость крови возрастают к центру сосуда, что и приводит к «уплощению» профиля скоростей. Одновременно у стенок сосуда образуется тонкий пристеночный слой плазмы крови, не содержащий эритроцитов и поэтому обладающий низкой вязкостью. В итоге эритроциты продвигаются по сосуду как бы в оболочке из плазмы, что уменьшает трение крови о стенки и облегчает движение крови по сосудам.

Рис. 9.17. Деформация сосуда при возникновении пульсовой волны: а — в начальный момент выброса систолического объема крови в аорту; б, в — распространение деформации по длине сосуда

При выбросе крови в аорту во время систолы часть кинетической энергии систолического объема крови переходит в потенциальную энергию упругой деформации стенок аорты (рис. 9.17, а) [37]. Образуется некоторый временный «резервуар», где запасается часть вытолкнутой желудочком крови.

В диастолу проходит обратный процесс: потенциальная энергия деформированной стенки крупного кровеносного сосуда переходит в кинетическую энергию порции крови, создавая дополнительный фактор, способствующий ее движению. В каком-то смысле эластичный сосуд как бы «дорабатывает» усилие сердца.

Таким образом, выброс крови в аорту сопровождается упругими деформациями ее стенок и периодическими изменениями (колебаниями) давления крови на эти стенки. Их источником является периодический выброс крови в аорту при сокращении желудочка сердца.

Распространяющиеся далее по сосудистой системе колебания давления крови, сопровождающиеся деформацией стенок сосудов, называют пульсовой волной. Амплитуда пульсаций уменьшается при распространении волны от аорты к периферии (рис. 9.17, б, в).

Давление Р на стенки кровеносных сосудов в некоторой точке сосудистой системы зависит от ряда параметров: времени t, расстояния от сердца до данной точки х, частоты сердечных сокращений v, скорости распространения пульсовой волны v: Р – f(x, t, со, и, а). Это давление можно представить в виде двух слагаемых:

где Рср — давление, обусловленное постоянным средним уровнем кровенаполнения (постоянная составляющая); P(t) — слагаемое, определяемое пульсовыми колебаниями кровотока.

Рис. 9.18. Зависимость давления крови от времени в плечевой артерии

Колебания давления вызывают и изменения объема кровенаполнения. Считая кровеносный сосуд упругим резервуаром, связь между объемом крови V в данном участке сосуда в любой момент времени и давлением можно записать в виде уравнения

где V0 — объем полости сосуда при среднем давлении Рср; k — коэффициент пропорциональности, характеризующий эластичность сосуда.

Типичная зависимость давления крови от времени в норме в крупном кровеносном сосуде (плечевой артерии) показана на рис. 9.18, где отмечены значения пульсового (1), минимального, или диастолического (2), среднего (3) и максимального, или систолического (4) давления.

Следует подчеркнуть, что среднее давление Рср определяется не средним значением ординаты графика, а более сложным образом:

где Т — период пульсовых колебаний; t — текущее время.

Из рис. 9.18 видно, что пульсовые колебания давления имеют довольно сложную форму и аналитическая запись зависимости Р(х, t, со, и, а) затруднена.

Однако, как и всякий сложный периодический процесс, они могут быть представлены в виде набора гармонических составляющих (разложение в ряд Фурье). Гармонический анализ пульсовых колебаний кровотока является одним из важных методов его изучения.

Тогда для первой гармонической составляющей давления (Рг) пульсовой волны можно записать достаточно простое выражение:

где Р0 — амплитуда пульсовых колебаний.

Подчеркнем, что коэффициент а зависит от свойств кровеносных сосудов и в формуле (9.26) под этой величиной можно понимать некоторое его эффективное значение. Реально эластичность сосуда уменьшается с увеличением расстояния от сердца к периферии.

Морфологически это обусловлено изменением относительного содержания эластина и коллагена в сосудистой ткани. Так, в общей сонной артерии отношение эластина к коллагену 2:1, а в бедренной артерии 1:2.

С удалением от сердца увеличивается доля гладких мышечных волокон, которые в артериолах являются уже основной составляющей сосудистой ткани.

Рассмотрим теперь скорость распространения пульсовой волны. В крупных кровеносных сосудах она определяется по формуле МоенсаКортевега

где Е — модуль упругости стенки сосуда; h — толщина стенки; d — диаметр сосуда. Величину р можно считать плотностью вещества сосуда.

Как видно из формулы (9.27), с увеличением жесткости сосуда и увеличением толщины его стенки скорость пульсовой волны возрастает. Так, в аорте она равна 4-6 м/с, в артериях мышечного типа — 8-12 м/с.

В венах, которые обладают большей эластичностью, скорость пульсовой волны меньше, и, например, в полой вене составляет около 1 м/с.

Из этих данных следует, что скорость распространения пульсовой волны намного больше линейной скорости кровотока, в покое не превышающей даже в аорте значения 0,5 м/с.

С возрастом эластичность сосудов человека снижается (модуль упругости растет), а скорость пульсовой волны возрастает. Она растет и с увеличением давления. При повышенном давлении сосуд несколько растягивается, становится более «напряженным» и для его дальнейшего растяжения требуется большее усилие.

Форма пульсовых колебаний и их характеристики являются отражением работы сердца и состояния сосудистой системы. Поэтому их регистрация в различных участках сосудистой системы и последующий анализ имеют диагностическое значение.

Некоторые методы регистрации этих процессов будут изучаться при рассмотрении механизмов прохождения электрического тока через живую ткань. Здесь отметим только принцип определения скорости распространения пульсовой волны на некотором участке сосудистой системы, который представлен на рис. 9.19.

Верхняя кривая на этом рисунке — электрокардиограмма (ЭКГ), т.е. зависимость биопотенциалов, вызванных работой сердца, от времени. Каждый участок ЭКГ соответствует определенной фазе сокращения сердца.

Нижняя кривая — пульсовые колебания, характеризующие изменение давления (а следовательно, и степень кровенаполнения) со временем в определенном участке сосудистой системы.

Рис. 9.19. Синхронная запись пульсовой волны и ЭКГ

Начало систолы происходит раньше, чем начало увеличения прилива крови к исследуемому участку сосуда.

Для распространения волны давления по сосудистой системе требуется некоторое время Ait, которое может быть определено из сравнения верхней и нижней кривых.

Зная из анатомических соображений расстояние по сосуду от сердца до исследуемого участка L, можно определить среднюю скорость пульсовой волны: v = Ь/At.

При подобных исследованиях регистрируют еще и первую производную от нижней кривой (см. рис. 9.19). Если сама эта кривая отображает изменение объема кровенаполнения в данном участке сосудистой системы, то ее первая производная показывает, как изменяется во времени скорость кровенаполнения.

Источник: https://studref.com/467425/meditsina/nekotorye_osobennosti_dvizheniya_krovi_sosudam

С какой скоростью течет кровь в человеке?

Скорость течения крови максимальна у оси сосуда

Скорость циркуляции крови в организме не всегда одинакова. Движение кровотока по сосудистому руслу изучает гемодинамика.

Кровь движется быстро в артериях (в наиболее крупных — со скоростью около 500 мм/сек), несколько медленнее — в венах (в крупных венах — со скоростью около 150 мм/сек) и совсем медленно в капиллярах (менее 1 мм/сек).

Различия в скорости зависят от суммарного поперечного сечения сосудов.

Когда кровь течет через последовательный ряд сосудов разного диаметра, соединенных своими концами, скорость ее движения всегда обратно пропорциональна площади поперечного сечения сосуда в данном участке.

Кровеносная система построена таким образом, что одна крупная артерия (аорта) разветвляется на большое число артерий средней величины, которые в свою очередь ветвятся на тысячи мелких артерий (так называемых артериол), распадающихся затем на множество капилляров.

Каждая из ветвей, отходящих от аорты, уже самой аорты, но этих ветвей так много, что суммарное поперечное сечение их больше сечения аорты, а поэтому скорость течения крови в них соответственно ниже.

По приблизительной оценке, общая площадь поперечного сечения всех капилляров тела примерно в 800 раз больше площади сечения аорты. Следовательно, скорость течения в капиллярах примерно в 800 раз меньше, чем в аорте.

На другом конце капиллярной сети капилляры сливаются в мелкие вены (венулы), которые соединяются между собой, образуя все более и более крупные вены. При этом суммарная площадь поперечного сечения постепенно уменьшается, а скорость тока крови возрастает.

В ходе исследований выявлено, что данный процесс является непрерывным в организме человека вследствие разницы давления в сосудах. Прослеживается течение жидкости от участка, где оно высокое, к участку с более низким. Соответственно, имеются места, отличающиеся наименьшей и наибольшей скоростью течения.

Отличают объемную и линейную скорость крови. Под объемной скоростью понимают то количество крови, которое проходит через поперечное сечение сосуда за единицу времени.

Объемная скорость во всех участках кровеносной системы одинакова. Линейная же скорость измеряется тем расстоянием, которое проходит частица крови за единицу времени (в секунду).

Линейная скорость разная в различных отделах сосудистой системы.

Объемная скорость

Важным показателем гемодинамических значений является определение объемной скорости кровотока (ОСК). Это количественный показатель жидкости, циркулирующей за определенный временной отрезок сквозь поперечное сечение вен, артерий, капилляров. ОСК напрямую связана с имеющимся в сосудах давлением и сопротивлением, оказываемым их стенками.

Минутный объем движения жидкости по кровеносной системе вычисляется по формуле, учитывающей эти два показателя. Однако это не свидетельствует об одинаковом объеме крови во всех ответвлениях кровеносного русла на протяжении минуты.

Количество зависит от диаметра определенного участка сосудов, что никак не влияет на снабжение кровью органов, так как общее количество жидкости остается одинаковым.

Методы измерения

Определение объемной скорости не так давно еще проводилось так называемыми кровяными часами Людвига. Более эффективный метод – применение реовазографии. В основу способа положено отслеживание электрических импульсов, связанных с сопротивлением сосудов, проявляющемся в качестве реакции на воздействие тока с высокой частотностью.

При этом отмечается следующая закономерность: увеличение кровенаполнения в определенном сосуде сопровождается снижением его сопротивляемости, при уменьшении давления сопротивление, соответственно, увеличивается. Эти исследования обладают высокой диагностической ценностью для выявления заболеваний, связанных с сосудами.

Для этого выполняется реовазография верхних и нижних конечностей, грудной клетки и таких органов, как почки и печень. Другой достаточно точный метод – плетизмография. Он представляет собой отслеживание изменений в объеме определенного органа, появляющихся в результате наполнения его кровью.

Для регистрации этих колебаний используются разновидности плетизмографов – электрические, воздушные, водные.

Флоуметрия

Этот метод исследования движения кровотока основан на использовании физических принципов. Флоуметр прикладывается к обследуемому участку артерии, что позволяет осуществлять контроль над скоростью кровотока при помощи электромагнитной индукции. Специальный датчик фиксирует показания.

Индикаторный метод

Использование этого способа измерения СК предусматривает введение в исследуемую артерию или орган вещества (индикатора), не вступающего во взаимодействие с кровью и тканями.

Затем через одинаковые временные отрезки (на протяжении 60 секунд) в венозной крови определяется концентрация введенного вещества. Эти значения используются для построения кривой линии и расчета объема циркулирующей крови.

Данный метод широко применяется с целью выявления патологических состояний сердечной мышцы, мозга и других органов.

Линейная скорость

Показатель позволяет узнать скорость течения жидкости по определенной длине сосудов. Иными словами, это отрезок, который преодолевают компоненты крови в течение минуты.

Линейная скорость изменяется в зависимости от места продвижения элементов крови — в центре кровяного русла или непосредственно у сосудистых стенок. В первом случае она максимальная, во втором – минимальная.

Это происходит в результате трения, действующего на компоненты крови внутри сети сосудов.

Скорость на разных участках

Продвижение жидкости по кровеносному руслу напрямую зависит от объема исследуемой части. Так, например:

• Самая высокая скорость крови наблюдается в аорте. Это объясняется тем, что тут самая узкая часть сосудистого русла. Линейная скорость крови в аорте — 0.5 м/сек.• Скорость движения по артериям составляет около 0.3 м/секунду. При этом отмечаются практически одинаковые показатели (от 0.3 до 0.

4 м/сек) как в сонных, так и в позвоночных артериях.• В капиллярах кровь движется с наименьшей скоростью. Это происходит вследствие того, что суммарный объем капиллярного участка во много раз превышает просвет аорты. Уменьшение доходит до 0.5 м/сек.

• Кровь течет по венам со скоростью 0.1- 0.

2 м/сек.

Определение линейной скорости

Использование ультразвука (эффект Доплера) позволяет с точностью определить СК в венах и артериях.

Сущность метода определения скорости данного типа в следующем: на проблемный участок прикрепляют специальный датчик, узнать нужный показатель позволяет изменение частотности звуковых колебаний, отражающих процесс течения жидкости.

Высокая скорость отражает низкую частоту звуковых волн. В капиллярах скорость определяется с использованием микроскопа. Наблюдение ведется за продвижением по кровяному руслу одного из эритроцитов.

Индикаторный

При определении линейной скорости также используется индикаторный способ. Применяются меченные радиоактивными изотопами эритроциты. Процедура предусматривает введение в вену, расположенную в локте, индикаторного вещества и прослеживание его появления в крови аналогичного сосуда, но в другой руке.

Формула Торричелли

Еще одним методом является применение формулы Торричелли. Здесь учитывается свойство пропускной способности сосудов. Есть закономерность: циркуляция жидкости выше в том участке, где имеется наименьшее сечение сосуда. Такой участок — аорта. Самый широкий суммарный просвет в капиллярах. Исходя из этого, максимальная скорость в аорте (500 мм/сек), минимальная – в капиллярах (0.5 мм/сек).

Использование кислорода

При измерении скорости в легочных сосудах прибегают к особому методу, позволяющему определить ее при помощи кислорода. Пациенту предлагают сделать глубокий вдох и задержать дыхание. Время появления воздуха в капиллярах уха позволяет с помощью оксиметра определить диагностический показатель.

Средняя для взрослых и детей линейная скорость: прохождение крови по всей системе за 21-22 секунды. Данная норма характерна для спокойного состояния человека. Деятельность, сопровождаемая тяжелой физической нагрузкой, сокращает этот временной промежуток до 10 секунд.

Кровообращение в организме человека — это движение главной биологической жидкости по сосудистой системе. О важности данного процесса говорить не приходится. От состояния кровеносной системы зависит жизнедеятельность всех органов и систем.

Определение скорости кровотока позволяет своевременно выявить патологические процессы и устранить их с помощью адекватного курса терапии.

[источники]Источники:http://www.zentrale-deutscher-kliniken.de
https://prososud.ru/krovosnabzhenie/skorost-krovotoka.html

https://znaesh-kak.com/m/mf/%d1%81%d0%ba%d0%be%d1%80%d0%be%d1%81%d1%82%d1%8c-%d0%b4%d0%b2%d0%b8%d0%b6%d0%b5%d0%bd%d0%b8%d1%8f-%d0%ba%d1%80%d0%be%d0%b2%d0%b8 Это копия статьи, находящейся по адресу http://masterokblog.ru/?p=15487.

Источник: https://masterok.livejournal.com/4869845.html

ЛечениеСосудов
Добавить комментарий